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Turbulent hypersonic viscous interaction 

By J. L. STOLLERYT AND L. BATES 
Department of Aeronautics, Imperial College, London 

(Received 29 May 1973) 

A theoretical analysis has been made of turbulent viscous interaction on iso- 
thermal surfaces at  hypersonic speeds. The important parameters governing the 
effects of incidence and displacement have been obtained under both strong and 
weak interaction conditions for flat-plate flows. A more general expression 
relating boundary-layer growth to the external pressure field and effective body 
shape has been obtained. The method is applied to the wedge compression corner 
problem and the results compared with some experimental data. 

1. Introduction 
Viscous interaction describes flows in which the boundary-layer growth signifi- 

cantly distorts the external flow field, which in turn reacts on the development of 
the boundary layer. The effective body shape and the actual pressure distribution 
can differ widely from the geometric body shape and the inviscid pressure distri- 
bution so often used for boundary-layer calculations in subsonic and supersonic 
flows. There are a number of examples of viscous interaction throughout the 
Mach number range but two of the most important concern hypersonic flow near 
the sharp leading edge of a flat plate and shock-boundary-layer interaction. 

As Barnes tk Tang (1966) pointed out the leading-edge flow is unlikely to be tur- 
bulent since transition Reynolds numbers are so high at  hypersonic speeds. How- 
ever, shock-boundary-layer interaction in turbulent flow is certainly important 
and turbulent interaction on curved surfaces may also be of practical interest. 

After the intuitive approach as outlined in, for example, the book by Hayes & 
Probstein (1959), the classic paper by Cheng et al. (1961) laid the foundations of 
laminar hypersonic viscous interaction. They uncovered the important para- 
meters governing the flow and applied their analysis to a variety of inclined flat 
plates. Their work was later modified by Sullivan (1970) and extended to a wide 
range of curved surfaces by Stollery (1970). In  this paper an attempt is made to 
provide a similar theory for turbulent flow. The greatest difficulty lies in 
adequately (and simply) expressing the growth of a turbulent boundary layer in 
terms of an initially unknown pressure distribution P(z) .  Here the authors have 
initially adopted the intuitive approach which has proved so useful under laminar 
conditions for suggesting the relevant flow parameters and then adapted the 
momentum-integral method of Spence (1961) for a more detailed prediction 
method. Comparisons are made between such predictions and the experimental 
data of Coleman (1973) and Elfstrom (1972). 
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2. Theory 
Basically the problem is to find a solution to the set of equations 

P = f l ( Y e ) ’  ye =fi(’*), 6” =fA’), (1)’ ( 2 ) ,  (3) 

where P is the initially unknown pressure distributionp,(x)/p,, ye is the effective 
body shape and 6* is the boundary-layer displacement thickness. The pressure is 
assumed constant across the boundary layer, so that pe = pw. Equations (1)-( 3) 
represent a very general statement of the problem. The functionally correct forms 
are given later. 

Stollery (1970) showed that the Newton-Busemann pressure law as used by 
Cheng grossly overestimated the centrifugal effects for some curved surfaces and 
overall the tangent-wedge rule was the most satisfactory. Here we shall use either 
the tangent-wedge rule 

Y + l  

where K = M, dye/dx, or the ‘strong’ and ‘weak’ approximations to it, i.e. 

K2 p 1, P -N +?(Yf 1)K’, (1  b)  

gel ,  P = l + y K .  (1c) 

( 2 4  

The effective shape is taken as the displacement surface defined by 

ye = yw + S”, 
where the geometric body shape y,(x) is given. 

2.1. The displacement thickness 

The simplest approach follows the intuitive method used to find the viscous 
interaction parameters for laminar flow. We extend the semi-empirical incom- 
pressible relations for turbulent flow over a flat plate? by writing 

where a bar denotes an average value in the boundary layer. Using the equation 
of state (p = pRT) 

equation (3  a )  may 

Finally writing 

we obtain 

together with the linear viscosity law 

PIPrn = c, FIT*’ 

be written as 

This type of analysis is really only suitable for flat-plate flows where sensible 
average values can be specified. Before discarding (36) the strong and weak 
interaction parameters can be found and some simple examples considered. 

f See, for example, the book by Duncan, Thom & Young (1970). 
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2.2. The turbulent viscous interaction parameters 
If yw = 0 then ye = 6" and y: = d&*/dx, so that from (3  b )  

Hence for strong viscous interaction [equation (1 b)] 

P N [C, MS,/Re,]$ = x,. 
For weak viscous interaction 

M, ds*/dx {C, MS,/Re, P}*. 

P = 1 +yM,(d&*/dx) N 1, 

hence M,dP/dx - [C,Ms/Re,.* = xw. (7) 
TheJlat plate at ilzcidence a. The above parameters are the same as those 

deduced by Barnes & Tang (1966) and suggest scalings for the characteristic 
equation for turbulent interaction obtained by combining (1 a) ,  (2 a )  and (3 b) ,  
namelv 

where a, is a constant. We attempt to scale this general equation using the weak 
interaction parameters M, CI and xw since the most general form of the pressure 
relation (1 a )  is a function of M,a, not just of M2, a2. Thus we write 

Y = y/al, x = x / l ,  

where 

1.e. x = {M,a/Xw35. 
The scaled equation is 

(9) 
which confirms the important parameters, M, a controlling the effect of incidence 
and xw describing the displacement effect. 

For strong interaction the simpler expression (1 b)  may be used for P so that 

( Y , - Y ~ )  [&Y(Y+ J-)M%yL21* = a1X{C,M4,/Re,}* (10) 
replaces (8) .  The appropriate scaling is again 

Y = y p ,  x = 211, 

but 1 is now 

i.e. x = {M2,a2/X}% 
The scaled equation is 

(Y, - Yw) YAj = a2 X +  = a,{M% aZ/%}Y, (11) 
where! a2 = a,/{+y(y + I))*. Thus in this situation the single parameter is the ratio 
of tht: 'sh-ong' inviscid term M$a2 to the strong displacement term A. 

10-2 



148 J .  L. Xtollery and L. Bates 

2.3. The heat-transfer-rate distribution 

Heat-transfer (and skin-friction) relations can be found using an approach 
similar to that adopted by Eckert (1956) and others in the reference enthalpy 
methods, but consistent with the simple analysis described in $2.1. By analogy 
with the incompressible flow relation we write 

where bars again denote average properties in the boundary layer (it is tacitly 
assumed that ti N u ~ ) .  Then 

N 

N 

using ( 5 ) .  Hence 
I 

M3, Xt, N {M: C,/Re,)-k Pb. 

For weak interaction P 21 1, so that 

M3, st, x,, 
whereas for strong interaction P N X , ,  which gives 

Xt, - (N9, C,lRe,)**xF - 2. 
So far the simple relations have been based on expressions such as (3  a )  and (3  b)  
suitable primarily for flat-plate flows. For more general surfaces it is important 
to find a more accurate relation for 6*(x). 

2.4. A general expression for the displacement thickness 

The variation of 6" with the pressure gradient, wall temperature ratio, Reynolds 
number and Mach number (provided that M $ 1) can be found by adapting the 
analysis of Spence (1961). The somewhat sweeping assumption is made that for 
hypersonic flow the effective surface conditions (denoted by the subscript e) can 
be related to each other and to the free-stream conditions by the isentropic 
relations. The isentropic assumption is already implicit in writing the momentum 
equation in the form derived by Young (1953) as 

d0  0 du 7, 
- + ( ( H + 2 - M , 2 ) - ~ = - -  
ax u, ax peuy 

where 8 is the momentum thickness, H the form factor S*/0 and 7, the shear stress 
at  the wall. Now 



Turbulent hypersonic viscous interaction 149 

and for Me % 1 and assuming Crocco's temperature relation the form factor can 
be written (see Spence 1961) as 

where Hi is the incompressible value of H ,  T, is the wall temperature and To is 
the free-stream total temperature. Thus at hypersonic Mach numbers the 
momentum integral equation for a diatomic perfect gas (y  = 1.4) is 

The skin-friction coefficient Cfe can be expressed in terms of 8 using Eckert's 
reference enthalpy method. The details are given ekewhere (Stollery 1973) but 
the result is 

where 

The 'constant' k comes from the definition of the reference temperature T*, i.e. 

N Ma, - 0.5 (0.44~ +%) for 2M: $ 1 
5 

= ICM:, 

where 

assuming that the recovery factor r is 0.9. 

7c = 0*04( 1 + 2.5Tw/To), 

Substitution of (19) into (16a) enables the momentum equation to be 
re-arranged as 

Provided that B 3 H,(T,/T,) - 4 is constant this equation is integrable to 

Noting that 6" = HB and P r: (Mrn/MJ7 for y = 1.4 and taking Hi = 1-3  the 

where 7 = +(5.75 - 1.625T,/T0), K = 3(6 - 1.3T,/T0) and 5 is the dummy variable 
in x. If P 2: constant then (22) indicates that 

6* /x  N {Coo M4,/PBeZ}*, 

which is the relation derived in ( 3 b ) .  If P = constant x xn is substituted in (22) 
to seek the strong viscous interaction solution (when F cc (dS*/dx)Z) the solution 

P N (M9,CmIRe,)S 
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is obtained as in (6). As pointed out by one of the referees the complete solution 
of (22) for strong viscous interaction is of the form 

P% = C,(Mm6*)-~ + C,(M, 6*)', 

where h = -%[21/(30- 6-5Tw/T0)]. The constant C, is known but C, is arbitrary. 
Putting C, = 0 gives the quoted result. The physical justification for this choice 
is that P must be finite (and less than the normal shock value) at x = 0. Hence 
the integral in ( 2 2 )  evaluated at x = 0 must be zero and so C, = 0. 

The final result (22) indicates that the displacement thickness increases with 
the Mach number M,, decreases in an adverse pressure gradient and is almost 
independent of the wall temperature ratio Tw/To. The assumption that Hi N con- 
stant is reasonable provided that any adverse pressure gradient present is not so 
severe as to cause separation. 

2.5 .  Heat transfer and skin friction 

The expression already derived for 8 [equation ( 2 1 ) ]  may be substituted back 
into (19) to obtain 

where e = i ( 7  - 1.3TwT0) and 5 = B(23 - 6-5Tw/T0). To obtain St and C, based on 
free-stream properties the above expression must be multiplied by pe/p,. From 
the isentropic external flow assumption pe/pm E (Mm/Me)5 N PS hence 

where cr = &(27 - 1.3Tw/T0) and o = +c. If P = constant then Xt, - P# as 
suggested earlier [see ( 1 3 ) ] .  Equation ( 2 4 )  suggests that both the Stanton number 
and the skin-friction coefficient decrease with Mach number and wall temperature 
ratio but increase with pressure gradient. These are the accepted trends except for 
near separation conditions, when C,, drops rapidly. It must be remembered that 
throughout this simple analysis flat-plate velocity profiles have been assumed. 

3. Applications and discussion 
As a simple illustrative example consider a flat plate at  zero incidence. Even 

in the strong interaction zone near the leading edge P i s  a slowly varying function 
of x (P N x-b, see ( 6 ) )  and so the elementary expression ( 3  b)  for 6" might suffice.? 
With yw = 0 equations (1 a), ( 2  a) and (3  b)  may be combined as 

t The more general expression for 6* [equation (ZZ)] is always to be preferred on 
theoretical grounds. It is nevertheless true that the simpler relation [equation (3  a)] 
intended mainly for illustrative purposes sometimes gives predictions in closer agreement 
with the experimental data. 
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where a, is now available from (22) for y = 1-4 as 

1 + 1*3Tw/TO 
( I  + 2*5Tw/T0)%' 

a, = 0.051 --- 
The appropriate scaling is now 

Y = M, yp, x = x/l, 

where 1 = xM9,Cm/Re,. 
The scaled equation is 

Near the leading edge YL2 9 1 so the equation becomes 

which has a solution 
Y, Y 3  = a,X+, 

Ye = (;)-:u2Ex+, 

where a2 = al/{$y(y + 1)}*. The corresponding expression for P is 
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( 2 5 )  

P = ( E y ( y  + 1) a?}+%, (28) 
where y = 1.4. 

Starting values for the computer solution of (26) may therefore be obtained 
from (27) and (28).t Further back on the plate P-t 1 and (26) shows that the 
boundary-layer growth reduces to  the conventional flat-plate value 

The corresponding value of the Stanton number for strong interaction is given 
by (15) with the constant of proportionality taken from (24). Figure 1 shows 
P and X t ,  vs. X with the asymptotic value for large and small X marked. 

Similar analyses to demonstrate the effects of turbulent viscous interaction on 
flow over flat plates at incidence and over concave and convex surfaces can 
easily be made still using the simplest expression for 6". Results are to be found 
in the thesis by Bates (1973). 

N X t .  

3.1. Flow past a wedge compression corner 

As mentioned in the introduction shock-boundary-layer interaction at  a com- 
pression corner is probably the most important example of turbulent viscous 
interaction. In  this case P varies rapidly near the corner and reaches high values 
over the ramp so the less approximate relation for 6*(x) should be used. The 
problem then is to solve the set (1 a) ,  (2 a)  and (22), 

where K = M, dyJdx, 
Ye = Ytu+6* 

t Since the transition Reynolds number at high Mach numbers is so large there will be 
no region of turbulent strong viscous interaction. To apply the method a virtual origin 
must be defined and this was done in the experimental comparisons which follow, by using 
the relation r cc &. The energy thickness was found by integrating the measured heat- 
transfer-rate distribution over the flat-plate region. 
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FIGURE 1. (a)  Pressure distribution and ( b )  heat transfer on a, flat plate at 
zero incidence. X = {Rez/Nt  CJ. 

where 7 = +(5.75 - 1.625Tw/T0) and K = 3(6 - 1*3Tw/To), for a given geometry yw 
and initial conditions M,, unit Re and TWITo. This set has been solved for hyper- 
sonic flow over a wedge compression corner under identical initial conditions to 
those used by Elfstrom (1972) and Coleman (1973) in their experiments. Com- 
parisons between the theoretical predictions and experimental data are shown 
in figures 2 and 3. The heat-transfer estimates were made using (24) and the 
calculated pressure distribution P(x) .  

For the 15' compression corner (figure 2) the agreement between theory and 
experiment is remarkably good considering the simplicity of the analysis. How- 
ever, a t  30" (figure 3) the agreement is not so good. The theoretical prediction of 
heat transfer rises above the experimental data to overestimate the values down- 
stream on the wedge. This difference is probably due to the assumption of the 
isentropic edge flow conditions used in the boundary-layer analysis, an assump- 
tion which is grossly violated at the larger corner angles. Indeed the success of 
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FIGURE 3. (a) Pressure distribution and (b )  heat transfer on a wedge compression corner 
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the method in predicting the pressure for the larger angle model, and both 
pressure and heat transfer at the more modest turning angle, is due to the choice 
of the tangent-wedge rule for the pressure law. This is a reasonable approximation 
to  the oblique shock relations and is the only way in which the true non-isentropic 
nature of the corner flow is taken into account. For concave and convex surfaces 
where the external flow would be isentropic the more appropriate Prandtl-Meyer 
relation should be used in place of the tangent-wedge rule. It would then be most 
interesting to compare the predictions of the modified method with data obtained 
from hypersonic turbulent flow over such shapes. 

4. Incipient separation 
We have demonstrated that the important parameters for strong viscous 

interaction a t  hypersonic speeds are M2, a2 and 2,. Laminar-flow incipient- 
separation data are well correlated by these parameters, interpreting a as the 
incipient-separation value ai and evaluating Xam, the laminar viscous inter- 
actioii parameter, a t  the hinge line x = L. For turbulent flow similar reasoning 
would suggest that 

M2,ai N (M9,C,/ReL)Q 

or ai N (M2,Cm/ReL)3. 

Reference to the compilation of experimental data given by Coleman & Stollery 
(1972) shows that the picture is far more complex. Certainly the values of ai are 
much larger than those for laminar flow, where 

but the only consistent trend shown by the experimental data is that ai increases 
with the Mach number M,. 

5. Laminar flow 
As mentioned in the introduction Cheng et al. (1961) indicated the method of 

solution for all laminar viscous interaction problems. They used Lees’s (1953) 
description of the hypersonic laminar boundary layer, in which he justifies 
neglect of the pressure-gradient term in the transformed momentum equation 
under cold-wall conditions, to obtain the simple relation 

where XI,,, is the laminar viscous interaction parameter ML(Cm/Re,)J. Now the 
momentum integral equation is common to all types of boundary layer so the 
analysis presented here is immediately extendable to laminar flow. The only 
differences are that Hi = 2.6 instead of 1.3 and 
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This latter result is obtained by applying Eckert's reference enthalpy method to 
the local incompressible value taken as 

+Cf{ = @332Re;* = 0.221Re;1. 

Substitution of these relations leads to the final expression 

where q5 = 3(5-5.2Tw/T0) and 9 = 4(6-2.6Tw/T0), which is very similar to 
Lees's result (29) though making somewhat different assumptions and derived in 
a different way. In  fact the predictions of laminar viscous interaction on a flat 
plate from (3  1) agree very well with those made using the improvement to Lees's 
analysis suggested by Moore (1961). 

6 .  Axisymmetric flow 

momentum integral equation is 
The extension to axisymmetric flow is perfectly straightforward. The 

d8 0 du 0 d r  C, - + ( H  + 2 - M:) - -e+ - - = - 
ax u, dx r ax 2 '  

Once again this equation is directly integrable assuming that Hi and Tw/To are 
constant. Taking the same expression for the local skin friction and form 
parameter as in two-dimensional flow the result for a turbulent boundary layer is 

where 7 = 3(5-75 - 1-625Tw/T0) and K = +(6 - 1-3Tw/T0). The tangent-cone rule 
could be used in place of the tangent-wedge relation for pressure but again the 
choice must be guided by the shape of body in question. 

7. Conclusions 
The problem of turbulent viscous interaction a t  hypersonic speeds may be 

tackled in a similar way to that described by Cheng et al. (1961) for laminar flow. 
The important parameters describing the effects of shape and displacement are 
N,a and (M~C,/Re,)% for weak interaction and M2,a2 and (M9,CmIRe,)+ for 
strong interaction. 

The growth of the boundary-layer displacement thickness 6*(x) in an unknown 
pressure gradient for any given Mach number and wall temperature ratio can be 
found by modifying Spence's solution of the momentum integral equation. Using 
this expression for 6 together with suitable laws relating the pressure to the 
effective shape the equations may be solved simultaneously to give 6"' P and 
hence the heat-transfer rate. The method has been tested against some experi- 
mental data at  M, = 9 with promising results. 
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